Cold Working Processes

Abstract:

Cold working is the plastic deformation of metals below the recrystallization temperature. In most cases, such cold forming is done at room temperature.
The major cold-working operations can be classified basically as squeezing, bending, shearing and drawing.

Cold working is the plastic deformation of metals below the recrystallization temperature. In most cases of manufacturing, such cold forming is done at room temperature. Sometimes, however, the working may be done at elevated temperatures that will provide increased ductility and reduced strength, but will be below the recrystallization temperature.

When compared to hot working, cold-working processes have certain distinct advantages:

  • No heating required
  • Better surface finish obtained
  • Superior dimension control
  • Better reproducibility and interchangeability of parts
  • Improved strength properties
  • Directional properties can be minimized

Some disadvantages associated with cold-working processes include:

  • Higher forces required for deformation
  • Heavier and more powerful equipment required
  • Less ductility available
  • Metal surfaces must be clean and scale-free
  • Strain hardening occurs (may require intermediate anneals)
  • Imparted directional properties may be detrimental
  • May produce undesirable residual stresses

Table 1: The major cold-working operations

The major cold-working operations can be classified basically under the headings of squeezing, bending, shearing and drawing, as follows.

Squeezing Processes

Most of the cold-working squeezing processes have identical hot-working counterparts or are extensions of them. The primary reasons for deforming cold rather than hot are to obtain better dimensional accuracy and surface finish. In many cases, the equipment is basically the same, except that it must be more powerful.

Cold Rolling

Cold rolling accounts for by far the greatest tonnage of cold-worked products. Sheets, strip, bars and rods are cold rolled to obtain products that have smooth surfaces and accurate dimensions.

Swaging

Swaging basically is a process for reducing the diameter, tapering, or pointing round bars or tubes by external hammering. A useful extension of the process involves the formation of internal cavities. A shaped mandrel is inserted inside a tube and the tube is than collapsed around it by swaging.

Cold Forging

Extremely large quantities of products are made by cold forging, in which the metal is squeezed into a dive cavity that imparts the desired shape. Cold heading is used for making enlarged sections on the ends of rod or wire, such as the heads on bolts, nails, rivets and other fasteners.

Sizing

Sizing involves squeezing areas of forgings or ductile castings to a desired thickness. It is used principally on basses and flats, with only enough deformation to bring the region to a desired dimension.

Extrusion

Extrusion is a bulk deformation process where a billet, generally cylindrical, is placed in a chamber and forced through a die. The die opening can be round to produce a cylindrical product, or the opening can have a variety of shapes. Typical extrusion products are shown in Figure 1. Because of large reductions imparted during the extrusion process, most extrusion processes are performed hot in order to reduce the flow strength of the metal. Cold extrusion can occur but it is usually one step in a multi step cold forging operation.

Figure 1: Schematic of extrusion processes: a-direct or forward extrusion; b-indirect or reverse extrusion; c-impact extrusion and d-hydrostatic extrusion.

Search Knowledge Base

Enter a phrase to search for:

Search by

Full text
Keywords

Headings
Abstracts

Physical properties are available for a huge number of materials in the Total Materia database.

Data is available through official information from standards and also through Total Materia unique similar materials cross referencing functionality, adding another dimension to your search for physical properties data!

Enter the material of interest into the quick search field. You can optionally narrow your search by specifying the country/standard of choice in the designated field and then clicking "Search".


After selecting the material of interest to you, click on the Physical Properties link to view data for the selected material. The number of physical property data records is displayed in brackets next to the link.


Physical properties are displayed according to the origin of the data set. Official data from standards can be found under the official tab, data deriving from other sources for the material will also be displayed under its own tab.


The similar materials tab displays all materials that are similar to the original material and have physical properties inserted. This can be very handy when looking for equivalent materials!


The typical tab gives a generic overview of property data for the material for you to use as a useful starting point for further investigation.


For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.